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ABSTRACT 
In this paper an experimental comparison of 
neuro-fuzzy structures, namely linguistic and zero and 
first order Takagi-Sugeno, is developed. The 
implementation of the model is conducted through the 
training of a neuro-fuzzy network, i.e., a neural net 
architecture capable of representing a fuzzy system. In 
the first phase the structure of the model is obtained by 
subtractive clustering, which allows the extraction of a 
set of relevant rules based on a set of representative 
input-output data samples. In the second phase, the 
model parameters are tuned via the training of a neural 
network. Furthermore, different fuzzy operators are 
compared, as well as regular and two-sided Gaussian 
functions. 
 
KEYWORDS: system identification, neural networks, 
fuzzy systems, neuro-fuzzy networks, clustering. 
 
 
INTRODUCTION 
 
 
Nowadays, information is playing a more and more 
relevant role in society. This circumstance is notorious 
not only in complex industrial production systems but 
also in simple leisure activities. Several studies have 
already been conducted in terms of development of 
modeling and control algorithms for industrial systems 
based on so-called intelligent techniques, as a means of 
integrating “intelligence” in production systems. 
Fundamentally, such developments aim to overtake 
some of the limitations and difficulties associated with 
classical methodologies. In this context, there is 
presently a growing interest on neuro-fuzzy techniques 
for system identification. In fact, fuzzy models have 
some properties that make them particularly interesting, 
namely universal approximation [1] and the possibility 
of linguistic interpretation [11], being the former hardly 
attained via MLP (Multi-Layer Perceptrons). However, 
they have associated an important limitation, which 
comes from the difficulty to quantify the fuzzy 
linguistic terms. Therefore, neuro-fuzzy nets appear as 
an attempt to make possible learning capabilities in 
fuzzy systems. 
The methodology presented is carried out in two main 
phases: in the first one, structure learning is performed, 
i.e., a set of fuzzy rules is obtained; in the second one, 
the model parameters are tuned, i.e., the parameters of 

the membership functions of the fuzzy system.  
Based on the generic methodology referred, this paper 
makes an analysis regarding some important issues in 
fuzzy modeling, e.g., type of rules, e.g., Takagi-Sugeno 
[10] or linguistic, type of operators and membership 
functions. In terms of functions, this study is restricted 
to simple and two-sided Gaussian functions. 
So, in Section 0 the main issues of fuzzy identification 
are introduced. In Section 0 subtractive clustering, used 
for structure learning, is presented, after what the 
parameter learning strategies are described in Section 0. 
The methodologies are applied to the Mackey-Glass 
time series, in Section 0. Finally, some conclusions are 
drawn in Section 0. 
 
 
FUZZY IDENTIFICATION 
 
 
Dynamical system identification deals with the 
implementation of models using experimental data. 
Thus, when a model is developed based on the theory of 
system identification, its parameters are tuned according 
to some criteria, aiming to obtain a final representation 
adequate for the modeling purposes. In this sense, fuzzy 
identification is presented as a particular case of system 
identification, in which the model is included in the 
class of fuzzy systems. 
Thus, without loss of generality, let us assume a 
single-input single-output (SISO) model, with one input, 
u, and one output, y, from where N data samples are 
collected (1): 

Z u y u y u N y NN = ( ), ( ) , ( ), ( ) ,..., ( ), ( )1 1 2 2m r  (1) 

Using data collected form the system, the goal is to 
come up with a fuzzy model, represented by a set of 
rules of type Ri (2): 

R If y t is A and u t d is B then y t is Ci i i i: ( ) ( ) $( )- -1 1 1 1  (2) 

where d represents the system delay time and Aji, Bji and 
Cji denote linguistic terms associated to each input and 
output. Those terms are defined by their respective 
membership functions µ µ µA B Cji ji ji

, , . In this way, the 

previous structure is called a FARX structure (Fuzzy 
Auto Regressive with eXogenous inputs) as a 
generalization of the well-known ARX structure. Thus, 
the selection of a set of rules of type (2), as well as the 
definition of the fuzzy sets Aji, Bji and Cji, constitute 



some project issues specific to fuzzy systems. 
STRUCTURE LEARNING 
 
 
In order to obtain a set of g fuzzy conditional rules, 
capable of representing the system under study, 
clustering algorithms are particularly suited, since the 
permit a scatter partitioning of the input-output data 
space, which results in finding only the relevant rules. 
Comparing to grid-based partitioning methods, 
clustering algorithms have the advantage of avoiding 
the rule base explosion, i.e., the curse of dimensionality. 
In this paper, Chiu’s subtractive clustering is applied 
[2]. This scheme possesses some interesting advantages, 
especially in a neuro-fuzzy identification context. In 
fact, the algorithm is characterized by its efficiency and 
for being suited for the initialization of iterative 
optimization procedures, as is the case. 
Chiu’s algorithm belongs to the class of potential 
function methods, being, more precisely, a variation of 
the mountain method (see [3]). In this class, a set of 
points is defined as possible group centers, each of them 
being interpreted as an energy source. In subtractive 
clustering the center candidates are the data samples 
themselves. In this way, the main limitation of the 
mountain method is overtaken. In fact, there the 
candidates are defined in a grid, leading to the curse of 
dimensionality. 
So, let ZN (1) be a set of N data samples, z1, z2, …, zN, 
defined in a m+n space, where m denotes the number of 
inputs and n the number of outputs. In order to make the 
range of values in each dimension identical, the data 
samples are normalized, so that they are limited by a 
hypercube. 
As was referred, it is admitted that each of the samples 
defines a possible cluster center. Therefore, the potential 
associated to zi is (3):  
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where ra>0 is radii, a constant which defines the 
neighborhood radius of each point. Thus points zj 
located out of the radius of zi will have a reduced 
influence in its potential. On the other hand, the effect 
of points close to zi will grow with the proximity. In this 
way, points with a dense neighborhood will have higher 
potentials associated.  
After computing the potential for each point, the one 
with the highest potential is selected as the first cluster 
center. 
Next, the potential of all the remaining points is 
reduced. Defining z1

* as the first group center and 
denoting its potential as P1

*, the potential of the 
remaining points is reduced as in (4):  
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where the constant rb>0 defines the neighborhood radius 
with sensible reductions in its potential. 

In this way, points close to the chosen center will have 
their potential reduced in a more significant manner, 
and so the probability of being selected as centers 
decreases. This procedure has the advantage of avoiding 
the concentration of identical clusters in dense zones. 
Therefore, rb is selected to be a bit higher than ra, so as 
to avoid closely spaced clusters. Typically, rb = 1.5 ra. 
After performing the potential reduction for all the 
candidates, the one with the highest potential is selected 
as the second cluster, after what the potential of 
remaining points is again reduced. Generically, after 
determining the rth group, the potential is reduced as (5): 
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The procedure of center selection and potential 
reduction is repeated until a stopping criterion is 
reached [3]. 
As can be understood from the description of the 
algorithm, the number of clusters to obtain is not 
pre-specified. However, it is important to note that the 
parameter radii is directly related to the number of 
clusters found. Thus, a small radius will lead to a high 
number of rules, which, if excessive, may result in 
overfitting. On the other hand, a bigger radius will lead 
to a smaller number of clusters, which may originate 
underfitting and so, models with reduced representation 
accuracy. Therefore, in practice it is necessary to test 
several values for radii and select the most adequate 
according to the results obtained. 
After applying subtractive clustering, each of the 
clusters obtained will constitute a prototype for a 
particular behavior of the system under analysis. So, 
each cluster can be used to define a fuzzy rule able to 
describe the behavior of the system in some region of 
the input-output space. Typically, g fuzzy conditional 
rules of type (6) are obtained: 

Rule r:  

 IF (X1 is LX1(r)) AND (X2 is LX2(r)) AND … 
AND (Xm is LXm(r))  
 THEN (Y1 is LY1(r)) AND (Y2 is LY2(r)) 
AND … AND (Yn is LYn(r)) 

(6) 

where each of the linguistic terms in the antecedent, 
LXj(r), has associated a membership function defined as 
follows (7): 
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Here, xj denotes a numeric value regarding to the jth 
input dimension and xrj

* is the jth coordinate in the 
m-dimensional vector xr

*. Equation (7) results from the 
computation of the potential associated to each point in 
the data space. Clearly, expression (6) is a consequence 
of using linguistic models, i.e., models in which the 
consequents are fuzzy sets. Such consequents result 
naturally from the application of subtractive clustering 
and are obtained as follows (8): 
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where yo denotes a numeric value regarding the oth 
output dimension and yro

* is the jth coordinate in the 
n-dimensional vector yr

*.  
Obtaining an initial structure for Takagi-Sugeno 
models, in which the terms in the consequents are 
typically zero and first order linear functions, is 
performed similarly. However, since the consequents 
are not fuzzy sets, the initialization procedure just 
described applies only to the antecedents. In fact, based 
on the linear characteristics of the consequents, their 
values can be easily obtained by means of linear 
optimization techniques. 
Comparing (7), (8) and the general equation for 
Gaussian functions, it becomes clear that the 
membership functions considered belong to the type 
referred. Thus, regarding the standard deviation of each 
function, expression (9) is obtained trivially: 

σ rj
ar=
8

 (9) 

Finally, after the parameterization of the Gaussian 
membership functions, the data used, normalized, are 
restored to their initial values. In the same way, the 
function parameters are adjusted to the domains defined 
for each dimension. 
 
 
PARAMETER LEARNING 
 
 
After determining a fuzzy model structure, the model 
parameters, i.e., the centers and standard deviations of 
the Gaussian membership functions, should be tuned. 
Therefore, it is necessary to select the type of model to 
use. In linguistic models, the conditional rules are of 
type (6). Regarding zero order Takagi-Sugeno models, 
with constant consequents, the rules are of type (10). As 
for first order Takagi-Sugeno models, the rules are of 
type (11), where for(x) is defined as in (12). 

Rule r:  

 IF (X1 is LX1(r)) AND (X2 is LX2(r)) AND … 
AND (Xm is LXm(r))   
 THEN (y1= b1r) AND (y2= b2r) AND … 
AND (yn= bnr) 

(10) 

Rule r:  

 IF (X1 is LX1(r)) AND (X2 is LX2(r)) AND … 
AND (Xm is LXm(r))  
 THEN [y1= f1r(x)] AND [y2 = f2r(x)] AND 
… AND [yn= fnr(x)] 

(11) 
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As can be seen, first order Takagi-Sugeno models are 

characterized by having more flexible consequents. 
Thus, these structures can be seen as smooth shifters 
between local linear models, which is an advantage 
comparing to the interpolative properties of both 
linguistic and zero order mo dels. 
The parameters of each of the fuzzy structures referred 
are adjusted by means of a fuzzy neural network, i.e., a 
neural network able to represent the functions of a fuzzy 
system, namely, fuzzification, fuzzy implication and 
defuzzification. 
Basically, the nets presented in the following paragraphs 
are composed by an input layer, after which comes a 
fuzzification layer and then a rule layer. After the initial 
layers, the next layer is, in case of Takagi-Sugeno 
models, the final linear output layer. As for fuzzy 
consequents, the fourth layer is the union layer, used to 
integrate rules with the same consequents, and the last 
one is the output layer, responsible for defuzzification. 
In order to make the next expressions more readable, the 
notation used is presented beforehand: 

- ai
(p2): activation of the neuron i in layer 2, 

regarding the training pattern p (i denotes an input 
term: “input”); 

- ar
(p3): activation of the neuron r in layer 3, 

regarding the pattern p (r denotes “rule”); 
- as

(p4): activation of the neuron s in layer 4, 
regarding the pattern p (s denotes “S-norm”); 

- ao
(p5) = yo

(p): activation of the neuron o in layer 5, 
i.e., output, regarding the pattern p (o denotes 
“output”); 

As for Takagi-Sugeno models, the output takes place in 
the fourth layer, resulting: 

- ao
(p4) = yo

(p): activation of the neuron o in layer 5, 
i.e., output, regarding the pattern p (o denotes 
“output”); 

- yo
(p): desired activation for neuron o in layer 5, i.e., 

for the network output, regarding pattern p. 
 
 
Takagi-Sugeno models 
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Figure 1. Neuro-fuzzy network: Takagi-Sugeno type 



consequents. 

From the described previously, Takagi-Sugeno 
structures are represented by the architecture in Figure 
1. Naturally, the network presented serves both first and 
zero order models, in which the consequents will be 
either first order functions or constants, respectively.  
In this structure, the input layer simply receives data 
from the external environment and passes them to the 
next layer.  
In the second layer, the fuzzification layer, each of the 
cells corresponds to a membership function associated 
to each of the inputs. Defining conventional Gaussian 
functions, the output of each neuron in this layer is 
given by (13): 
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where cij and σij represent, respectively, the center and 
standard deviation of the ith membership function 
related to the jth input. Such parameters constitute the 
weights of layer one to layer two links (LXj(r) in Figure 
1). In the same expression, xj

(p) denotes the pth pattern 
associated do input j. 
Alternatively, it is possible to define two-sided Gaussian 
functions, which are characterized by their possibility of 
being asymmetric and containing a plateau, as a 
generalization of conventional functions (Figure 2). 
Therefore, the possibility of coming up with better 
results can be formulated, due to the increased 
flexibility of the generalized functions. 
As for the neurons in the rule layer, their function 
consists of performing the antecedent conjunction of 
each rule, by means of some T-norm, e.g., product (14) 
or minimum (15). The first one is classified as an 
algebraic operator and the second one is a truncation 
operator. 
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Figure 2. Two-sided Gaussian function. 
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In the previous expressions, nar stands for the number 
of inputs in the antecedent of rule r. 
Regarding the output layer, its task consists of 
computing numeric outputs based on the level of 
activation of each rule. As referred previously, in zero 
order models the weights in this layer denote the rule 

consequents, defined by constants. Therefore, each 
output neuron is activated as in (16). 
In the implementation of first order Takagi-Sugeno 
models, the net defines a fuzzy system with rules of 
type (11). In this way, the task of the output neurons is 
very similar to the previous, being defined as in (17). 
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Fuzzy consequents 
 
 
As a basis for dealing with fuzzy consequents, Lin 
defines in his architecture NFCN [5] a fuzzy neural net 
composed by five layers, as in Figure 3. However, the 
original structure is adapted in the present work, so as to 
allow different operators and membership functions. 
Comparatively to the net depicted in Figure 1, the first 
three layers perform exactly the same tasks. Obviously, 
the difference lays in the following layers. 
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Figure 3. Neuro-fuzzy network: fuzzy consequents. 

Thus, the fourth layer, called the union layer, is 
responsible for integrating the rules with the same 
consequents, via some S-norm, e.g., bounded sum (18) 
or maximum (19). The first one is classified as an 
algebraic operator and the second one is a truncation 
operator. There, nrs stands for the number of rules 
which have the neuron s as consequent. 
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As for the output layer, or defuzzification layer (d, in 
Figure 3), the layer four to layer five links (LYo(r) in the 
same figure) define the parameters of the membership 
functions associated to the output linguistic terms. Thus, 
based on these membership functions and on the 
activation of each rule, its neurons should implement a 
defuzzification method suited for fuzzy consequents, as 
the one presented in [5] (20): 
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In (20), cos and σos represent the center and standard 
deviation of the sth membership function related to 
output o. In case two-sided Gaussians are used, equation 
(21) results, as is defined in [9]. 
In the previous expressions,T(Yo) stands for the 
number of membership functions associated to each 
linguistic output variable Yo. The main idea of the 
defuzzification method proposed is to weight the 
activation of each rule, not only by the centers, right and 
left, but also by their standard deviations. Clearly, 
expression (21) is equivalent to equation (20) in case 
one deals with regular Gaussian functions. 
Based on the function performed by each neuron, the 
linguistic networks are trained in batch mode, via the 
well-known backpropagation algorithm. Regarding 
Takagi-Sugeno models, several alternatives are 
applicable. In fact, the training can be also conducted 
through backpropagation. However, as a consequence of 
the linearity in the output layer, it is possible to apply 
the least square estimator in matrix form. This strategy 
has the advantage of leading to a significant reduction 
of the number of epochs required. However, the time 
necessary for each epoch will be greater. The 
implementation of the training methodologies referred is 
described with some detail in [8]. 
 
 
SIMULATION RESULTS 
 
 
One of the most commonly used case studies in system 

identification consists of the prediction of the 
Mackey-Glass chaotic time series [6], described by 
equation (22): 
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It does not show a clear periodic behavior and it is also 
very sensible to initial conditions. The problem consists 
of predicting future values of the series. 
The application of the techniques described previously 
is carried out based on identification data from the 
“IEEE Neural Network Council, Standards Committee, 
Working Group on Data Modelling Benchmarks”, 
which are also used in the analysis of several other 
methodologies. So, in order to obtain a numeric solution 
the fourth order Runge-Kutta method was applied. For 
integration, it was assumed x(t)=0, t<0, and a time 
interval of 0.1. The initial condition x(0)=1.2 and the 
parameter τ=17 were also defined. In this case, [x(t-18), 
x(t-12), x(t-6), x(t)] are used to predict x(t+6). Based on 
the parameterization described, data was obtained in 
interval t ∈ [0; 2000], after what 1000 input-output pairs 
were selected from interval t ∈ [118; 1117]. The data 
collected are depicted in Figure 4. 
Using the samples obtained, the chaotic time series was 
modeled, according to the procedures described in the 
previous sections. Thus, the parameter ra was assigned 
the value 0.5, resulting 9 fuzzy rules. Next, the network, 
with four inputs and one output, was trained. 
 

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 100 200 300 400 500 600 700 800 900 1000  
Figure 4. Chaotic time series: identification data.  

After the application of the set of methodologies 
described, the results presented in Table 1 were 
obtained, where  FC, CC and FOC denote respectively 
fuzzy consequents, constant and first order consequents. 
 

RMSE 
Method Gaus. Nr.  

Par. 
Fuz. 
Op. 

Nr.  
Ép. 

Time  
p/ Ép. Train Test 

1 FC 2-sid. 180 Alg. 2000 0.27s 0.0070 0.0076 

2 “ “ “ Trunc. “ 0.24s 0.0111 0.0121 

3 “ Reg. 90 Alg. “ 0.26s 0.0066 0.0071 

4 CC 2-sid. 153 Alg. 1500 0.54s 0.0047 0.0050 

5 “ “ “ Trunc. “ 0.52s 0.0097 0.0108 

6 “ Reg. 81 Alg. “ 0.53s 0.0050 0.0052 

7 FOC 2-sid. 189 Alg. 300 4.1s 0.0025 0.0030 



8 “ “ “ Trunc. “ 4.3s 0.0038 0.0043 

9 “ Reg. 147 Alg. “ 4.0s 0.0030 0.0033 

Table 1. Chaotic series: training results. 

The results presented allow some conclusions to be 
drawn. Thus, using regular Gaussian functions presents 
some advantages in case fuzzy consequents are utilized. 
However, the higher complexity that results from the 
use of two-sided Gaussian functions does not originate a 
significant gain in terms of model accuracy, and so 
regular Gaussians are preferable. As for fuzzy operators, 
algebraic operators lead to much better results than 
truncation operators do. Models with constant 
consequents allow better results than linguistic models 
but first order models are the most accurate and need a 
considerable lower number of training epochs. 
However, linear optimization leads to high processing 
time, which may be problematic for real-time learning. 
As a consequence, zero order models appear to have a 
satisfactory trade-off between accuracy and efficiency.  
Figure 5 depicts the output for real and test data, 
regarding method 1. That figure shows the high 
prediction accuracy of the model, which is not the best 
achieved. 
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Figure 5. Chaotic series: output prediction in a 
linguistic model with algebraic operators and two-sided 

Gaussians.  

 
 
CONCLUSIONS 
 
  
In this paper a comparative analysis of different fuzzy 
structures and parameterizations is performed. By the 
application of subtractive clustering an initial structure 
for the fuzzy model is obtained, which is used for the 
initialization of a fuzzy neural network. Next, the 
parameters are adjusted through the training of the 
network, according to the structure defined, i.e., 
linguistic, zero order or first order Takagi-Sugeno. 
Algebraic and truncation operators are used, as well as 
regular and two-sided Gaussian functions. The 
techniques described are applied to the Mackey-Glass 
time series, having been concluded that first order 
models are the most accurate. However, zero order 
models present the best trade-off between model 

accuracy and efficiency. In terms of fuzzy operators, 
algebraic operators lead to more precise models. As for 
membership functions, it was concluded that the 
additional complexity of two-sided Gaussians did not 
originate a significant gain. So, regular Gaussian 
functions are preferable. 
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